Edge-Selection Heuristics for Computing Tutte Polynomials
نویسندگان
چکیده
The Tutte polynomial of a graph, also known as the partition function of the q-state Potts model, is a 2-variable polynomial graph invariant of considerable importance in both combinatorics and statistical physics. It contains several other polynomial invariants, such as the chromatic polynomial and flow polynomial as partial evaluations, and various numerical invariants, such as the number of spanning trees, as complete evaluations. We have developed the most efficient algorithm to-date for computing the Tutte polynomial of a graph. An important component of the algorithm affecting efficiency is the choice of edge to work on at each stage in the computation. In this paper, we present and discuss two edgeselection heuristics which (respectively) give good performance on sparse and dense graphs. We also present experimental data comparing these heuristics against a range of others to demonstrate their effectiveness.
منابع مشابه
Relative Tutte Polynomials of Tensor Products of Coloured Graphs
The tensor product (G1, G2) of a graph G1 and a pointed graph G2 (containing one distinguished edge) is obtained by identifying each edge of G1 with the distinguished edge of a separate copy of G2, and then removing the identified edges. A formula to compute the Tutte polynomial of a tensor product of graphs was originally given by Brylawski. This formula was recently generalized to colored gra...
متن کاملTutte polynomials of wheels via generating functions
We find an explicit expression of the Tutte polynomial of an $n$-fan. We also find a formula of the Tutte polynomial of an $n$-wheel in terms of the Tutte polynomial of $n$-fans. Finally, we give an alternative expression of the Tutte polynomial of an $n$-wheel and then prove the explicit formula for the Tutte polynomial of an $n$-wheel.
متن کاملVisualising the Tutte Polynomial Computation
The Tutte polynomial is an important concept in graph theory which captures many important properties of graphs (e.g. chromatic number, number of spanning trees etc). It also provides a normalised representation that can be used as an equivalence relation on graphs and has applications in diverse areas such micro-biology and physics. A highly efficient algorithm for computing Tutte polynomials ...
متن کاملSome results on vertex-edge Wiener polynomials and indices of graphs
The vertex-edge Wiener polynomials of a simple connected graph are defined based on the distances between vertices and edges of that graph. The first derivative of these polynomials at one are called the vertex-edge Wiener indices. In this paper, we express some basic properties of the first and second vertex-edge Wiener polynomials of simple connected graphs and compare the first and second ve...
متن کامل